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Solution of the modified Helmholtz equation in a triangular domain and an application
to diffusion-limited coalescence
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A new transform method for solving boundary value problems for linear and integrable nonlinear partial
differential equations recently introduced in the literature is used here to obtain the solution of the modified
Helmholtz equationqxx(x,y)1qyy(x,y)24b2q(x,y)50 in the triangular domain 0<x<L2y<L, with
mixed boundary conditions. This solution is applied to the problem of diffusion-limited coalescence,A
1A
A, in the segment (2L/2,L/2), with traps at the edges.
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I. INTRODUCTION

A new method for solving boundary value problems f
linear and for integrable nonlinear partial differential equ
tions~PDEs! has been introduced recently@1#. Here we apply
this method to the equation

Exx1Eyy1g~2Ex1Ey!50, ~1.1!

in the triangular domain2L/2<x<y<L/2, whereE(x,y) is
a scalar function andg is a positive constant. A solution o
Eq. ~1.1! in the semi-infinite wedge 0<x<y has been pre-
sented in @2#. Using the substitution E(x,y)51
2e2g/2(y2x)q(x,y), Eq. ~1.1! becomes the modified Helm
holtz equation

qxx1qyy24b2q50, b5
g

A8
. ~1.2!

Equation~1.1! with g5v/D represents the steady state of t
diffusion-limited reactionA1A
A on the line, where theA
particles diffuse with diffusion constantD, they merge im-
mediately upon encounter, and split into two particles~the
back reaction! at ratev @3–5#. E(x,y) represents the prob
ability that the interval (x,y) is empty. The concentration
profile of the particles is related toE(x,y) through c(x)
52Ey(x,x). Suppose that we limit ourselves to the segm
2L/2<x<L/2, then the domain of Eq.~1.1! is 2L/2<x
<y<L/2. The forward reaction is described by the bound
condition ~BC! E(x,x)51. If there are perfect traps at th
edges, x56L/2, one gets the BCsEx(2L/2,y)50,
Ey(x,L/2)50. These BCs transform into the following BC
for Eq. ~1.2!:

q~x,x!50, 2
L

2
<x<

L

2
,
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We rotate and translate the (x,y) axes, with the mapping
(x,y)°(2y1L/2,x1L/2). Equation~1.2! remains invari-
ant, but the domain is now 0<x<L2y<L—the isosceles
right triangle with vertices at (0,0), (0,L), (L,0)—and the
BCs become

q~x,L2x!50, 0<x<L, ~1.3a!

g

2
q~x,0!1qy~x,0!50, 0<x<L, ~1.3b!

g

2
q~0,y!1qx~0,y!50, 0<y<L. ~1.3c!

For the sake of generality, instead of the BC~1.3b!, ~1.3c!
we consider

g

2
q~x,0!1qy~x,0!5 f ~x!, 0<x<L, ~1.3b8!

g

2
q~0,y!1qx~0,y!5 f ~y!, 0<y<L, ~1.3c8!

where f (•) is an arbitrary smooth function.
We will show that: ~a! Eq. ~1.2! with the BCs ~1.3a!,

~1.3b8!, ~1.3c8! has a unique solution that can be expressed
closed form.~b! Equation~1.2! with the homogeneous BC
~1.3a!, ~1.3b!, ~1.3c! has only the trivial solutionq(x,y)50,
i.e., the only steady state of the processA1A
A, in a seg-
ment demarcated by traps, is the vacuum—when there ar
particles left—regardless of the magnitude ofv, the rate of
the back reactionA→A1A. ~c! For large back reaction
rates,gL@1, the characteristic relaxation time to the emp
absorbing state grows exponentially as (D/2v2)evL/2D.
l-
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Let z5x1 iy , let a bar denote the complex conjugatez̄
5x2 iy), and letzj denote the corners of the domain 0<x
<L2y<L ~see Fig. 1!;

z15L, z250, z35 iL . ~1.4!

II. ANALYSIS OF THE INHOMOGENEOUS PROBLEM

It is shown in Ref.@6# that the general solution of th
modified Helmholtz equation in the above domain can
represented as

q~x,y!5
1

2p i (
j 51

3 E
l j

eikz2 i (b2/k) z̄r j~k!
dk

k
,

0<x<L2y<L, ~2.1!

where l 1 , l 2 , l 3, are the rays on the complexk plane
defined by argk50, p/2, 5p/4, and oriented from zero to
infinity ~see Fig. 2!, while the functionsr j (k) are defined by

r j~k!5E
zj 11

zj
e2 ikz1 i (b2/k) z̄F1

2
~qx2 iqy!dz1 i

b2

k
qdz̄G ,

kPC, j 51,2,3, z45z1 . ~2.2!

FIG. 1. Domain of the modified Helmholtz equation, Eq.~1.2!.

FIG. 2. The raysl j , in the complex plane, along whichq(x,y)
is computed@Eq. ~2.1!#.
01611
e

Using the boundary conditions~1.3! to simplify the expres-
sions forr j (k), we find the following:

r1~k!52
1

2
q~0,0!1 ia~k!c1~2 ik !2 iF ~2 ik !, kPC,

~2.3a!

r2~k!5
1

2
q~0,0!1 ia~2 ik !c2~k!2 iF ~k!, kPC,

~2.3b!

r3~k!5 iE~k!c3~2kei (p/4)!, kPC, ~2.3c!

where

a~k!5
1

2 S b2

k
1k1

g

2D , E~k!5e(k1b2/k)L,

F~k!5 1
2 E

0

L

e(k1b2/k)yf ~y!dy, ~2.4!

and the unknown functionsc1 , c2 , c3 are defined by

c1~k!5E
0

L

e(k1b2/k)xq~x,0!dx,

c2~k!5E
0

L

e(k1b2/k)yq~0,y!dy,

c3~k!5E
0

A2L
e(k1b2/k)sqsS s

A2
,L2

s

A2
D ds. ~2.5!

Indeed, for the derivation of Eq.~2.3a! we usez5x, and we
note that the boundary condition~1.3b8! implies

1

2
„qx~x,0!2 iqy~x,0!…1 i

b2

k
q~x,0!

5
1

2
qx~x,0!1 i S b2

k
1

g

4Dq~x,0!2
i

2
f ~x!;

integrating by parts the terms involvingqx we find Eq.
~2.3a!. The derivation of Eq.~2.3b! is similar, where we use
the condition~1.3c8!. For the derivation of Eq.~2.3c! we use
z5 iL 1x2 ix, and we note that the boundary conditio
q(x,L2x)50 impliesqx(x,L2x)2qy(x,L2x)50.

In order to simplify the analysis, we have assumed t
the samefunction f appears in the BCs~1.3b8! and ~1.3c8!.
This implies that the PDE~1.2!, the triangular domain, and
the BCs~1.3a!, ~1.3b8!, ~1.3c8! are invariant under the reflec
tion x↔y, thusq(x,y)5q(y,x). Hence,c1(k)5c2(k).

We introduce the following notations:

c1~k!5c2~k!5w~k!, c3~2ke2 ip/4!5c~2 !,

c3~2keip/4!5c~1 !, e~k,z,z̄!5eikz2 i (b2/k) z̄. ~2.6!
4-2
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A. The analysis of the global relation

Equations~2.3! expressr j (k) in terms of the unknown
functionsw(2 ik), w(k), andc(1). These functions satisfy
the global condition: ( j 51

3 r j (k)50 @6#. This equation, and
its complex conjugate, are

a~k!w~2 ik !1a~2 ik !w~k!1E~k!c~1 !

5F~k!1F~2 ik !, kPC, ~2.7!

a~k!w~ ik !1a~ ik !w~k!1E~k!c~2 !

5F~k!1F~ ik !, kPC. ~2.8!

Following Ref. @6# we supplement these equations w
the equations obtained from Eqs.~2.7! and~2.8! by using the
transformations in the complexk plane, which invariantly
leave thepairs $w(2 ik),w( ik)% and $c(1),c(2)%. The
first pair is invariant underk°2k, and the second pair i
invariant under$k°2 ik,k° ik%. Using the latter transfor-
mations, Eqs.~2.7! and ~2.8! yield

a~2 ik !w~2k!1a~2k!w~2 ik !1E~2 ik !c~2 !

5F~2 ik !1F~2k!, kPC, ~2.9!

a~ ik !w~2k!1a~2k!w~ ik !1E~ ik !c~1 !

5F~ ik !1F~2k!, kPC. ~2.10!

Equations~2.7!–~2.10! are invariant underk°2k, thus we
do not obtain any additional equations using this transform
tion. Equations~2.7!–~2.10! are the basic equations need
for the determination of the unknown functionsw(k),
w(2 ik), c(1). The analysis of the basic equations leads
a matrix Riemann-Hilbert problem. However, in what fo
lows we will show that this problem can be bypassed, a
that q(x,y) can be obtained using onlyalgebraic manipula-
tions of the basic equations.

Equations~2.7!–~2.10! imply that w(2 ik), w(k), c(1)
can be expressed in terms ofw( ik) andc(2):

w~2 ik !5A~2 ik !w~ ik !1
E~k!

a~2k!D~k!
@A~2 ik !2E~ ik !

2E~2 ik !#c~2 !1G1~k!, ~2.11a!

w~k!52
a~k!

a~ ik !
w~ ik !2

E~k!

a~ ik !
c~2 !1G2~k!,

~2.11b!

c~1 !5
A~2 ik !E~k!1A~k!E~2 ik !

D~k!
c~2 !1G3~k!,

~2.11c!

where

A~k!5
a~k!

a~2k!
, D~k!5E~k!1A~k!A~2 ik !E~ ik !,

~2.12!
01611
-

o

d

and the known functionsGj (k), j 51,2,3, are defined in
terms off as follows:

G1~k!5
1

D~k!a~2k!
$@E~k!1A~2 ik !E~ ik !#

3@F~2 ik !2A~2 ik !F~ ik !#

1@12A~2 ik !#@A~2 ik !E~ ik !F~k!

1E~k!F~2k!#%. ~2.13a!

G2~k!5
F~k!1F~ ik !

a~ ik !
, ~2.13b!

G3~k!5
1

D~k!
$@12A~k!#@F~2 ik !2A~2 ik !F~ ik !#

1@12A~2 ik !#@F~k!2A~k!F~2k!#%.

~2.13c!

Indeed, Eq.~2.11b! is Eq. ~2.8!. Eliminating w(2k) from
Eqs.~2.9!, ~2.10!, we find

a~2k!w~2 ik !1E~2 ik !c~2 !2A~2 ik !@a~2k!w~ ik !

1E~ ik !c~1 !#

5F~2 ik !1F~2k!2A~2 ik !@F~ ik !1F~2k!#.

~2.14!

Replacing in this equationw( ik) by Eq.~2.8! and comparing
with Eq. ~2.7!, we find Eq.~2.11c!. Replacingc(1) in terms
of c(2) in Eq. ~2.14!, using Eq. ~2.11c!, we find Eq.
~2.11a!.

Equation~2.1! expressesq(x,y) in terms of r j (k), and
Eqs.~2.3! and~2.11! expressr j (k) in terms of theunknown
functionsw( ik), c(2), and the known functionsGj (k). The
known functions give rise to the contribution

G~x,y!5
1

2pEl 1

e~k,z,z̄!@a~k!G1~k!2F~2 ik !#
dk

k

1
1

2pEl 2

e~k,z,z̄!@a~2 ik !G2~k!2F~k!#
dk

k

1
1

2pEl 3

e~k,z,z̄!E~k!G3~k!
dk

k
. ~2.15!

In what follows we will show that, by using appropriate co
tour rotations, the integrals involving the functionsw( ik),
c(2) can be evaluated in terms of residues. Furthermo
these residues can be computed in terms of the funct
Gj (k). For the justification of these rotations we use t
following facts ~see Fig. 3!.
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~i! e(k,z,z̄), e(k,z,z̄)E(k), e(k,z,z̄)E(2 ik), are
bounded for 0,argk,p/2, p/2,argk,5p/4, 5p/4
,argk,2p, respectively.

~ii ! E(2k)E( ik) and c(2) are bounded for2p/4
,argk,3p/4, while E(k)E(2 ik)c(2) is bounded for
3p/4,argk,7p/4.

~iii ! D(k);E(k), k→0 and k→`, in 2p/4,argk
,3p/4; D(k);E( ik), k→0 and k→`, in 3p/4,argk
,7p/4.

Indeed, sincex>0 andy>0, e(k,z,z̄) is bounded both a
k50 andk5` in the first quadrant of the complexk plane.
Since 2p/2,arg(z2z3),2p/4, it follows that if p/2
,argk,5p/4, then 0,argk(z2z3),p. Hence exp@ik(z
2z3)2ib2/k(z̄2z̄3)# is bounded both atk50 andk5`; using
z35 iL , this exponential equalse(k,z,z̄)E(k). Similar con-
siderations apply toe(k,z,z̄)E(2 ik).

D(k)5E( ik)@E(k)E(2 ik)1A(k)A(2 ik)#. If 2p/4
,argk,3p/4, E(k)E(2 ik) is exponentially large atk
50 andk5`, andD(k);E(k). Similarly, if 3p/4,argk
,7p/4, E(k)E(2 ik) is exponentially small, andD(k)
;E( ik)A(k)A(2 ik);E( ik).

c(2) involves 2@ke2 ip/41(b2/k)eip/4#, thus it is
bounded for 2p/4,argk,3p/4. Similarly for
E(k)E(2 ik)c(2).

The contribution of the integral alongl 3, due to the terms
involving c(2) @see Eq.~2.11c!#, gives rise to two integrals
one involving e(k,z,z̄)A(k)E(2 ik)E(k)c(2)/kD(k), and
one involvinge(k,z,z̄)A(2 ik)E(k)2c(2)/kD(k). The first
integral is bounded in 5p/4,argk,2p, while the second
integral is bounded inp/2,argk,5p/4. Indeed, the inte-
grand of the first integral is dominated by

@e~k,z,z̄!E~2 ik !#@E~k!E~2 ik !c~2 !#,

5p

4
,argk,

7p

4
; @e~k,z,z̄!E~2 ik !#@c~2 !#,

7p

4
,argk,2p,

and each of the brackets is bounded. Similarly, the integr
of the second integral is dominated by

@e~k,z,z̄!E~k!#@c~2 !#,
p

2
,argk,

3p

4
;

@e~k,z,z̄!E~k!#@E~k!E~2 ik !c~2 !#,
3p

4
,argk,

5p

4
,

and each of the brackets is bounded.
01611
d

Hence, the integral alongl 3, due to the terms involving
c(2), equals an integral along l 1 involving
e(k,z,z̄)A(k)E(2 ik)E(k)c(2)/kD(k), an integral along
l 2 involving e(k,z,z̄)A(2 ik)E(k)2/kD(k), and a contribu-
tion due to residues, which will be computed below@see Eqs.
~2.19b! and ~2.19c!#. Combining these integrals with the in
tegrals due tow(2 ik) and to w(k) @see Eqs.~2.11a! and
~2.11b!#, we find

J1~x,y!5
1

2pE2l 2øl 1

e~k,z,z̄!

3F i

2
q~0,0!1a~k!A~2 ik !w~ ik !Gdk

k
,

~2.16!

J2~x,y!5
1

2pE2l 2øl 1

e~k,z,z̄!

D~k!
A~k!A~2 ik !2E~k!

3E~ ik !c~2 !
dk

k
. ~2.17!

For k in the first quadrant of the complexk plane,E(k)/D(k)
is dominated by 1, and each of the termse(k,z,z̄), w( ik),
E( ik), c(2) is bounded. Thus, bothJ1 andJ2 can be com-
puted in terms of residues.

The definition ofA(k) implies

A~2 ik !52
~k1L1!~k1L2!

~k2L1!~k2L2!
,

A~k!52
~k1L1!~k2L2!

~k2L1!~k1L2!
, L15

g

4
~11 i !,

L25
g

4
~211 i !,

so the poles ofA(2 ik) and A(k) occur atL1 , L2, and at
L1 , 2L2, respectively. Similarly, the poles ofA( ik) and
A(2k) occur at2L1 , 2L2, and 2L1 , L2, respectively.
Using these facts it follows that

FIG. 3. Regions wheree(k,z,z̄), e(k,z,z̄)E(k), e(k,z,z̄)E
(2 ik), c(2), E(k)E(2 ik)c(2) are bounded, and dominant be
havior of D(k).
4-4
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q~x,y!5G~x,y!1(
j 51

3

Rj~x,y!1P~x,y!, ~2.18!

whereG(x,y) is defined by Eq.~2.15!, P(x,y) is the contri-
bution toJ1 andJ2 due to the poles ofa(k)A(2 ik) and of
A(k)A(2 ik)2, and theRj are defined as follows:

R15 i(
j

e~k j ,z,z̄!A~k j !A~2 ik j !
2E~k j !E~ ik j !

k jD8~k j !
c~k j !,

~2.19a!

R252 i(
j

e~l j ,z,z̄!A~2l j !E~l j !
2

l jD8~l j !
c~l j !

12
e~L2 ,z,z̄!

D~L2!
E~L2!2c~L2!, ~2.19b!
s

01611
R352 i(
j

e~m j ,z,z̄!A~m j !E~2 im j !E~m j !

m jD8~m j !
c~m j !

22
e~2L2 ,z,z̄!

D~2L2!
E~2L2!E~ iL2!c~2L2!,

~2.19c!

c(k), D8(k) denote

c~k!5c~2ke2 ip/4!, D8~k!5
dD~k!

dk
, ~2.20!

and k j , l j , m j denote the zeros ofD(k) in 0,argk
,p/2, p/4,argk,5p/4, 5p/4,argk,2p, respectively.
Multiplying Eq. ~2.11c! by D(k) and evaluating the resulting
expression atkj5$k j ,l j ,m j%, we find
c~kj !52
@12A~kj !#@F~2 ik j !2A~2 ik j !F~ ik j !#1@12A~2 ik j !#@F~kj !2A~kj !F~2kj !#

d~kj !
, d~kj !Þ0, ~2.21!
ous

of
n

cal
e

b-

to

h

where

d~k!5A~2 ik !E~k!1A~k!E~2 ik !. ~2.22!

Noting that a(k)5(k1L1)(k2L2)/2k, a( ik)52(k
2L1)(k2L2)/2ik, and evaluating Eq.~2.8! at k5L2, we
find c(L2). Similarly, evaluating Eq.~2.9! at k52L2 we
find c(2L2):

c~L2!5E~2L2!@F~L2!1F~ iL2!#,
~2.23!

c~2L2!5E~2 iL2!@F~L2!1F~ iL2!#.

The term P(x,y) arises froma(k)A(2 ik) in J1, and
A(k)A(2 ik)2/D(k) @D(k)Þ0# in J2, each of which has a
simple pole atk5L1. Evaluation of the pertaining residue
yields

P~x,y!52e~L1 ,z,z̄!@a~L1!w~ iL1!1E~L1!c~L1!#.

Evaluating Eq.~2.8! at k5L1, we find

a~L1!w~ iL1!1E~L1!c~L1!5F~L1!1F~ iL1!.

Thus,

P~x,y!52e~L1 ,z,z̄!@F~L1!1F~ iL1!#. ~2.24!

In summary, assume thatd(kj )Þ0, wherekj is a zero of
D(k), and d(k), D(k) are defined by Eqs.~2.12!, ~2.22!,
respectively. Thenq(x,y) is given by Eq. ~2.18!, where
G(x,y) is defined by Eq.~2.15!, P(x,y) is defined by Eq.
~2.24!, and Rj (x,y), j 51,2,3, are defined by Eqs.~2.19!,
with c(kj ), c(L2), c(2L2) defined by Eqs.~2.21!, ~2.23!.
III. PHYSICAL PROBLEM

The physical problem corresponds to the homogene
BCs, i.e., f 50. In this case Eq.~2.18! yields q(x,y)50.
Thus, we only need to consider the assumption thatd(kn)
Þ0. If this assumption is violated then the equationsD(kn)
50 andd(kn)50 can be rewritten in the form

A~ ikn!2E~2 ikn!251, ~3.1a!

A~2kn!2E~kn!251. ~3.1b!

Equations~3.1! do not have a solution for generic values
g. Indeed, consider first the limit of infinite back reactio
rate,gL→`. Inspection of Eqs.~3.1! in this limit yields the
asymptotic solutionk`56L1 , 6L2. If there exists a steady
state other thanq(x,y)50, then it would also exist forgL
large but finite. We therefore seek solutions of~3.1! of the
form k5k`1e. Such solutions do not exist: Usingk`5L1,
Eq. ~3.1a! yields e5(1/4L)(211 i )—to first order in
e—while Eq. ~3.1b! yields the contradictory resulte
5(1/4L)(112 i ). The other values ofk` lead to similar
contradictory results. Thus, the only solution to the physi
problem isq(x,y)50, which corresponds to the trivial cas
of the vacuum, when no particles are left in the system.

Finally, consider the relaxation of the system into the a
sorbing empty state. Instead of Eq.~1.1!, we need to study

Exx1Eyy1g~2Ex1Ey!5Et , ~3.2!

wheret5Dt is a rescaled time parameter. We turn this in
an eigenvalue problem, by writing E(x,y,t)51
2e2ste2g/2(y2x)qs(x,y). This results in an equation forqs

identical to Eq.~1.2!, valid over the same domain, but wit
4-5
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4b25 1
2 g22s. The BCs for this equation are identical to E

~1.3!. We have already seen that the problem admits no z
eigenvalue:q0(x,y)50. The analysis fors.0 proceeds
along the same lines. Once again, the critical issue is whe
there exist solutions of Eqs.~3.1!. This time the asymptotic
solution for gL→` is k`5(g/4)@616 i (124s/g)1/2#,
(g/4)@6(124s/g)1/26 i #. A perturbation analysis show
that solutions exist for finitegL!1, provided that s
;2g2e2gL/2. The relaxation time to the empty state is the
fore (Ds)215(D/2v2)evL/2D.

It is instructive to compare our analysis ofA1A
A to
the mean-field result. The reaction-diffusion equation for
steady state of the process, in a segment demarcated by
is

Drxx1k1r2k2r250, 2L/2<x<L/2, ~3.3!

wherer(x) is the local particle density,k1 is the rate of the
back reactionA→A1A, k2 is the rate ofA1A→A, and the
traps impose the BCsr(6L/2)50. This equation predicts a
transition from an empty state (r50) to an active state (r
.0), when k1 exceeds a certain critical value@7,8#. Our
exact analysis shows that in the actual system of o
dimensional coalescence the noise destroys the transition
the only existing steady state is the empty state. The n
trivial steady state of the mean-field case is echoed in
exponentially large relaxation time found for large back
tat

01611
ro

er

-

e
ps,

e-
nd
n-
e
-

action rates. Although the lack of a transition cannot be
tablished from numerical simulations, especially in view
the long relaxation times forgL large, previous work had
suggested that a transition does not take place@9#.

While the mean-field approach of Eq.~3.3! fails to de-
scribe theA1A
A system on the line, it is interesting t
speculate about higher dimensions. Imagine the process
ing place in an infinited-dimensional space (x1 ,x2 , . . . ,xd)
with absorbing walls atx156L/2. Is there a dimension
above which the mean-field description is valid? If so, wh
is that dimension? Unfortunately, the method of empty int
vals employed ind51 does not generalize for higherd. A
related problem, of the propagation of the stable phase of
A1A
A process into an unstable empty region, has b
studied by numerical simulations@10#. It was found there
that the mean-field picture~in this case, the well-known
propagation of a Fisher front! applies above the critical di
mensiondc53, but the issue is still controversial. It woul
be interesting to see ifdc53 is also the critical dimension in
the present problem.
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